Northwestern ﬁ_:,-
University ILLINOIS INSTITUTE V

The Case for an Interwoven
Parallel Hardware/Software Stack

@ @

Kyle Hale, Simone Campanoni, Nikos Hardavellas, Peter Dinda

Northwestern
HEXSA Compiler Bb
Grou] PARAGE@N

The Interweaving Project
http://interweaving.org

Kyle C. Hale 1

5'5 ggg‘tjlelrs/iets}"cern 'LL'NO'SO"':"%ETSL%‘LZ.GY
The parallel software stack has ossified
..but

Good position to rethink the parallel HW/SW stack

Kyle C. Hale 2

Northwestern i’
University ILLINOIS INSTITUTE V

Why Change?
Limitations of the Parallel HW/SW Stack

Address space

All
mappings

But OS, compiler, and HW all make assumptions about
address spaces and translation!

[z (hit) - - DesSIZN baKked TNto HVV
VAddr EE | - Workloads changing
PAddr l : - SASOS increasingly common
r Pagewalker E - Power consumption
I
B l : N y
| '

DRAM page tables

Kyle C. Hale 3

Northwestern i’
University ILLINOIS INSTITUTE V

Why Change?
Limitations of the Parallel HW/SW Stack

But OS, compiler, and HW all make assumptions about

coherence!

- False sharing
- No SW control (hidden from OS,

_ language))

Kyle C. Hale 4

¢ -2 Northwestern ﬁ”
?';":,‘V"‘fv:'é' University ILLINOIS INSTITUTE

Many assumptions span the stack...

* Timing

Interweaving: reconsider these at all layers

* Scheduling (polling, lack of real-time, etc.)

Kyle C. Hale 5

S
j

Northwestern
ILLINOIS INSTITUTE

University Other Existing Ports Legion Codes NESL Codes OF TECHNOLOGY
(Racket, NDPC, [e.g. HPCG] [e.g. Qsort] OpenMP codes .
UPC(partial)) ! |) ISI;catlc i
(C/C++) Legion NESL VCODE erne(c+;asrrr:]e)wor
Runtime (C++) Runtime (C)
1 OpenMP
CLANG/LLVM
Blending —
Dynamic

SySte m Kernel Framework
Predictability v

Link

v I S I O n m Compilation
Hardware partitioned : Execution
using previously -
demonstrated techniques =

n
(4 \ 4 N
Debugging
T Enhanced Hybrid Runtime Produced by Toolchain
inux

_ Environment _ /

Coherence Special Features Hardware Platform

(x64 NUMA, Phi,
| Mapping HARP)

Kyle C. Hale

Static

Kernel Framework
(C+asm)

Nautilus kernel &

https://github.com/hexsa-lab/nautilus

OpenMP codes

NAS, BOTS, etc.

> |
= OpenMP

CLANG/LLVM

Blending

Compile with kernel mode assumption

Compiler produces “kernelized” code

Enhanced Hybrid Runtime Produced by Toolchain

Special Features Hardware Platform

(x64 NUMA, Phi,

n

£ - Northwestern V
= University ILLINOIS INSTITUTE

Nautilus Kernel

User Mo LN_ol_h@

Kernel Mode

- Parallel Application
| 1
Sk | 3 Parallel Runtime
X |x]2
TS Synch/
.5 Thread Events Topo | Paging | Alloc | Timers Ints Misc
< Hardware Full Privileged HW Access

Kyle C. Hale 11

£ Northwestern .
\Z University ILLINOIS INSTITUTE\J“"/

Interweaving Example:
CARAT: Compiler and Runtime-based Address Translation

* Address translation (via paging) is universal, yet showing its age
* TLB misses are a significant performance inhibitor, including in HPC
* TLBs/paging limits cache design
* Fundamentally a hardware/kernel co-design

e Can we do better than paging?
* CARAT uses physical addresses instead (no paging, no TLB)

* Protection and memory migration achieved via compiler/kernel co-design

* Proof-of-concept shows feasibility

A= Northwestern -
=/ University ILLINOIS INSTITUTE ¥
= OF TECHNOLOGY

Traditional Address Translation

Arbitrary Code (C, C++, ...)

Binary [opaque process]

Compiler \J

Intermediate Representation |

Kernel -

VAddr ‘

I
[
! I
Core 1
1
VAddr | I
y :
Object File 1
|
Lk VAddr I
Pagewalker :
Cache o fpaddr :
Hierirchy :
. . PAddr ¥
:.:.:... | Bir!ry DRAN Page Tables
..'...' RUN TIME
........... COMPILE TIME ;
. . ' . . Kyle C. Hale 13

622 Northwestern -
=5 University ILLINOIS INSTITUTE
- OF TECHNOLOGY

CARAT: Compiler and Runtime-based Address Translation
[PLDI “20]

3

1
Arbi.trary Code (C'-Cf*" o) : Carat Binary (signed) [process]
with some restrictions | o e - ~
! 38 ' AL
CARAT Compiler Y ! E 2 |Patch |k 2 3| e ®
1 o © e = |l 2 <
Intermediate Representation | 1 “g = 5,1‘ S| g E g
! g2 “el® 35
Guard I o S|z
Injection : o -/
Escape !
Tracki Transform 1
racxing : -E FChange Request
Allocation I 2
Tracking 1 o
| Mapper Verifier
| Intermediate Representation | |
* 1 . Kernel
|
| Object File | : PAddr +
. 1 Core
CARAT Link |
Runtime I PAddr *
\ 1
1
| Executable | I Cache Hierarchy
q |
50 ' Padr |
Oata®, !
v I DRAM
.:.:.:.. | Carat Binary (signed) | I
|
8.8.8.:.... COMPILE TIME . RUN TIME
1
. . ' . . Kyle C. Hale 14

622 Northwestern &
=5 University ILLINOIS INSTITUTE""’
- OF TECHNOLOGY

CARAT: Compiler and Runtime-based Address Translation
[In Submission Work]

* CARAT integrated into Nautilus Kernel

* Linux-compatible process abstraction...

e ...but executable runs as a component of the kernel

e ... yet with protection and memory migration available
* All while using physical addressing

Kyle C. Hale 15

422 Northwestern -
\& University ILLINOIS INSTITUTE W

nterweaving Example:
Compiler-based Timing (CT)

* Timing is traditionally driven by hardware timer interrupts
* Interrupt latency is high and not getting lower

* Limits granularity of many parallel constructs
e E.g. preemptive threads

* Can we replace hardware timers with callbacks introduced by the
compiler throughout the kernel and application codebase?
* Yes. And achieve similar precision. With 6x lower overhead.
* Enabling preemptive threads with 4x smaller granularity

A= Northwestern -
&=/ University ILLINOIS INSTITUTE
N OF TECHNOLOGY

Traditional Timing

2

Arbitrary Code (C, C++, ...) e
. Scheduler .
Compiler Fibers [ACtivations][Tlmers].A.

Intermediate Representation

Signal/Upcall

[Thread Scheduler A]

Kernel Timer Driver
[
|
I
Interrupt MMIO
l
. |
Object File |
I
Link ;
. . Y Core APIC Timer ¥
:.:.:... Binary
LS
........... COMPILE TIME RUN TIME
. . ' . . Kyle C. Hale 17

A= Northwestern
&=/ University

Compiler-based Timing [SC ‘20]

Arbitrary Code (C, C++, ...) + Kernel

Compiler

Intermediate Representation

]

Whole Program Integration

!

Time Hook TriggerInjection

!

Whole Program Reoptimization

l

Intermediate Representation

Object File

Link

A 4

Custom Kernel

COMPILE TIME

Other
Services
. Injected
FI bers Triggers
Thread
Scheduler Trigger
Fire
Function
Call

Service Fire
Function Calls

|

|
Time Hook Infrastructure]

Core

APIC Timer

RUN TIME

ILLINOIS INSTITUTE\J;";'
OF TECHNOLOGY

Northwestern
University

Find out more...

A Case for Transforming Parallel Runtimes
Into Operating System Kernels

ILLINOIS INSTITUTE
OF TECHNOLOGY

Paths to OpenMP in the Kernel

Interwoven s v e s

e G-t and otr . D UniedStes UniedStes Uit s Dot Sts
(. pangai@nortwestorecu . .
Deparment 5 Bl s and Gammpter Sclance acC Brian Homerding Conghao Liu Zhen Huang Simone Campanoni
Nortwestern Universiy NortwestraUnivecsty Mot of Northveser Univesy Northvester Unversy
o Notonsh Tl Uaited Sutes
Lborsory UtedStes

ABSTRAC it o o i, o b Uit Saes

Kyle Hale Din
MinceIsttuteof Nontwestem Unversty
Technelogy niedSats

Prospects for Functional Address Translation

Task Parallel Assembly Language for e

Abstract

Conor Hetlana® Geongios Transout Brian Suchy”

e o Uncompromising Parallelism

I Nortwosem Uity rincion Uty o it of Tchnology Ryan R Newion Kyl Hale
o et i b 08 Camcge e Vv [y it oo Techniogy
i o s PA U New ok Y. U5A a 1 lntroducton
Kernel framewock ddress translationfundamentally embodies a for considersble specdups over traditionally paged execution L oo suad Moot sy e oy OpenP 2.
e e e vy fo o okl s T i i = it ey
i K et B sy oo o Nikos Hardavelas Simone Campanori Peter Dinda o
I mohi o gt (i s oy s o o oo
et i G . U5h Chcgn 1. 054 g L U o

Categories and Subject Descriptors
.47 Operating Systems: Orgition s D D15

Keywords

1. INTRODUCTION

v ml“\“w??" "C‘-'?L‘JJI.“‘ ;“m e

O couse, dicaning s romsation il poses s
o s . ot feasble . gerl puprse computng
el il e il compin (o e

et he i i, o i
s e et b

Bomeee s tsin e o gh

it e eyt ey e e P o e o o i ol s e
et I g iy ton (FAD. The key idea in FAT, on which Seton I
" clabors,

S e e "o thn ecode this oncton
[n— ey, T i bl i rom et e, i
‘hich e oo opete t the sty o pges. a0

Jr— " o E s

el sgrecment n the community st ey

vty cachd by TLBe and o barduar. As
previously been explored. with DIY adess tanslaton (1]
changes. i, machines ar dramatically caling in 1S Lo, e rnsiadon 7, 29] b closs

" Given bardvare oo it is plaing recnfguble
designs were Baed. Thid, power and encgy v Decome i (ycgoal s rsaslation couk b megrid o
firtorderconcrn,ad the et supprts 4! oo n e ways. A vey igh speed uncional

o e
sysens M. iy g caes 5 iy e 1

e, rutimes.and conplers s mking it possle

i i i
e g e et ot :;"y\;‘“g;:‘;;‘ sy
o

OS + Runtime

e, el it sinle oty (3111 5 st bt
i model thee i oy sngle aves pace. In valating
i model, we developed o kel framewrk, Nowils 1301
s o the o e e ety e
psing with he masimun, poile page sz Thi sl

o e o i Syt e qins s il sl s

CARAT: A Case for Virtual Memory through
Compiler- and Runtime-Based Address Translation

Dot of Compts S Mo U
Evsuston. D, Unied St

Abstract CCS Concpts - Software and s engincering — Oper-
T i ation. Architecture
by i i)
(005 erney e
(CARAT, which instead e con.
o o N 05 17 o . s B r S

ordware suppart,although i coud s be retrfted into
o trwitiond pgiog el ek o

are support. CARAT tses complletime tramfortions
‘nd optimiztions combined withtighy-couled ratimer

1 Introduction

i protection and dymamic Pyl Pagnginthe 1905 52 Sine

memory. We argu fo te feasiilty of CARAT through 9egn spanning the ardare diey o the secs path

i 1 theyen,
& & the st (both aency and energy) of prformin the

5o g B . gt 7 o s e i 1 g et
anima oo s " e it f g e ey s

Compiler-Based Timing For
Extremely Fine-Grain Preemptive Parallelism

Sowap Ghsh N Coeis Simone Camparons e Dinda

" honesom Unierss
st o Guponiwestem<is

At et s e M snd e S5 ity sscons (1) 5,50

. i e 0 e et e . vl o msbar et b Contl s o
et e i I‘ZL.“:",‘?‘.ZJL‘ of gyt psn vl i 21

— : okl or el excuion

ey mchie, . e on s

e g s iEeng: o B e

o nd oplinicion: " Asuming an operaing syt el based mplementton,
i o ol s sy st coupid
e Vovee the pograrane o

L. vmropucTion

an rchin of my ki dopens

e eds

Abstract

Achiving paall performance and sty nvcves ke

specity TPAL trough s bstoct romchine s gl

e e st i compilr rslomations o

J compy
ation. 1 not contaned,the averhendsof i can

vkt o b th L o he Navtlos ke,
e

hstion shows that TPAL csn e

e Ty

Tha peoces

ccsConcept:

.
1 approach thal manifss th ptentlly vt mousts of

best i time. The e i 0 imorto the overheads fpr.

s complcated

sl s ppert o g0 o
L it with o os One Tuk Pore Aoty
Linguage (TPAL) i compac,RISC-ike seembly anguogs

) e

1 Introduction

CCK), complcs OpenMP ik forn it everges he kel

Compac o ol vl el Vs -

€S Concepts

ireonmveio
it e pge B e 3

Keywords

g i ——
rchieieionasagemirt e te s o vt

v ety g 4 s cpabis. g o

licient o ral machines. Tradiionally sobtions o

ey g ek o
g 5

ol gt o iy it
ot he benefitsof paraleisn, But when sk ovsheadsare
adiiesed,the asociated ptimizons nvole changing

e code o that he program swichesfoms parale 10 se-

Quentialcode,typically t “small” roblem sts Ths b 3

OS + Runtime +

’z
H

sy st e o s e ks

[HPDC ‘15] =

0S + HW = e

e merey anegenen Trelne .m - |r 2] ol mmu o wd m

Compiler

{ m HLL + OS [SC 2 1]

= PLDI 21]

L i i s i T copy i sy versions o Windows (5] ad pre- 2101 NacS [Vol e 120 um S kS

s dsign of coopestive theads
Rl o bkl fep i e (ohich wecll s, osseny i amachi

300 wanagementon el machine nning sy o much e granulcy (55, With b
T ool o ot of he badware spport o oging. o et swich s deined by the progeanmu ad s Kaown 40
ecoming limiing The bacdware evtuses upporing e il s o s

ih simply ivales g o

[MASCOTS “19]

OS + Runtime +
Compiler

Not shown: [PLDI “20]

Hard Real-time Scheduling for Parallelism (OS+Runtime) [HPDC ‘18]

Fast HW Barriers (HW+0OS+Runtime) [HPDC ‘19]] .

Fast Queuing (Runtime+Compiler) [MASCOTS ‘21] http://interweaving.org

Fast Events (HW+0S) [MASCOTS '18] Kyle C. Hale 19
...and others

Compiler + OS
[SC’20]

see it
wednesday

4.2 Northwestern \ 7
7 University ILLINOIS INSTITUTE
OF TECHNOLOGY

nterweaving lTeaser:
-unction-granularity Virtualization

* More need for single-function execution contexts...even in HPC
* But virtualization platforms not really designed for this

‘wasp client client hypercall client hypercall
virtine creation handler handler
uests
virtine int foo() { T < z X Very low overheads for HLL
jj=tecscccecimeccecconc palppsasatpacesencacgs : function invocation (FULLY ISOLATED)

. U
// isolated compute \ | virtine virtine \vlrtine :
return 0; =P func 1 | || | func 2” Nfunc n | |]
| 1 R Virtine BN Virtine + Snapshot

NN Virtine NT &3 Virtine + Snapshot+NT

KVM driver] or ’ Hyper-V driver 1.5 543us
user ; wasp | ! c 431ps
-------- i0ct1(KVM_RUN) |- == == ========-{WHvRunVirtualProcessor() |- - - g 1.01
kernel 7 7 .
= 236pus
--------------- BRERE R T D Ny ©0.5-
| KVM API : | Hyper-V API : n 137us
or
Linux kernel Windows NT kernel 0.0- '
' ' '

1 VT-x/SVM \
20

Northwestern

University

Interweavin

Op

Teaser:

ILLINOIS INSTITUTEﬁV

enMP

Runtime
(Program|
legw

Paths to OpenMP in the Kernel

Jiacheng Ma
Northwestern University
United States

Wenyi Wang
Northwestern University
United States

Brian Homerding
Northwestern University

Conghao Liu
Illinois Institute of

Argonne National Technology
Laboratory United States

United States

Kyle Hale
Illinois Institute of
Technology
United States

Abstract

OpenMP implementations make increasing demands on the ker @@l
We take the next step and consider bringing OpenMP into

kernel. Our vision is that the entire OpenMP application, run-time

system, and a kernel framework is interwoven to ! hecome the kernel

allowing the OpenMP implement: mon d

the hardware in a custom manner. We uv

approaches to achieving this goal. The first, runtime in kernel (RTK).

ports the OpenMP runtime to the kernel. allowing any kegngl oo
227

a specialized process abstraction for running user leve

'IK
code within the kernel. The third, custom Lumpzluru-n or l.uml

to use OpenMP pragmas. The second. process in kemel

(CCK), compiles OpenMP into a form that leverages the kernel
framework without any intermediaries. We describe the design and
implementation of these approaches, and evaluate them using NAS
and other benchmarks.

Northwestern University

Northwestern University

Michael Cuevas
Northwestern University
United States

Aaron Nelson

United States

Zhen Huang Simone Campanoni
Northwestern University

United States United States

Peter Dinda

Northwestern University

United States

Dinda. 2021. Paths to OpenMP in the Kernel. In The International Confer-

er u‘i erformance Computing Networking, Storage and Analysis (SC
'21), 14-19 2021, St. Louis MO, USA. ACM. New York, NY, USA,

1I|u 1145/3458817.3476183

doiorg

nesdlayﬂmleM

OpenMP [2 2| is arguably the most widely-employed approach
for the ligguis pression and realization of shared memory
p ara \28} cause it extends existing sequential languages
]l L yffran with parallel features. As a consequence,
it can be incrementally adopted. While OpenMP's origins are in
compact expression of loop-level data parallelism on SMPs, it has
grown to include support for heterogeneous parallelism (including
memory and devices), and task parallelism (including fine-grained
and recursive tasks).

pe ! implementation issplit bgtween the compiler, which
t h gma omp ...)in the con-

CCS Concepts 9 d p n tm e wﬂ
pee u S tg\l the sequential holt language and & ers thcm to scqucnhal

« Software and its engincering
pilers: Runtime environments. - Compul, Eb methodologies

erating systemsS® com-

—+ Parallel computing methodologies:
Keywords

parallelism, OpenMP, operating systems t h e re a r

ACM Reference Format:
Jiacheng Ma, Wenyi Wang, Aaron Nelson, N
ing, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle Hale, and Peter

hael Cuevas, Brian Homerd-

u mspou

8% and a run l) e system that the lowered code invokes to dy-
1 1e r ertv arallelism. Undemeath both lies the
1 G, Prives for memory, thread, task, and

sy mhrum/ ation management that the run-time system uses, and

'speedups
ult e p st performant way possible.

In atypical implementation, the OpenMP compiler and run-time

ler, run-time system, and kernel

system target the user-mode process model of a general-purpose
kernel. This means that neither the generated code nor the run-time

Compilation
Kernel

piler does
swork)

OF TECHNOLOGY

21

67 Northwestern .
\Z University ILLINOIS INSTITUTE‘J“"/

What’s Next

* Selective Coherence

* Blended Device Drivers

* Pipeline Interrupts

* Bespoke Execution Contexts
* More emphasis on HLLs

Northwestern ﬁ’
University ILLINOIS INSTITUTE V

What’s Next

e Selective coherence

Normalized Performance Speedup

Using high-level program information to
inform coherence protocol:

- ~46% speedup

- ~53% interconnect energy reduction

Kyle C. Hale 23

&n
&

Northwestern
University

What’s Next

* Blending \ _____________
app code

Swap

<
«

Local machine Fetch Server

= '!/'
EO GY

Interrupt-free
Systems

lightweight us kernel
level polling code

e.g. Shenango,
DPDK

Blended device drivers

Kyle C. Hale

compiler

24

£ Northwestern -
\& University ILLINOIS INSTITUTE V
- OF TECHNOLOGY

Students and Collaborators

* Many students have or are contributing to these efforts
* Complete list: http://interweaving.org
* You should hire them!

* Work presented here:

* Brian Suchy, Mike Wilkins, Souradip Ghosh, Brian Homerding, Jiacheng Ma, Wenyi Ma,
Michael Cuevas, Zhen Huang, Conghao Liu, Brian Tauro, Nick Wanninger, Josh Bowden, Enrico
Deiana, Vijay Kandihah, Drew Kersnar, Alex Bernat, Gaurav Chaudhary, Siyuan Chai, Kevin
McAfee, Kevin Mendoza Tudares

Heartbeat is in collaboration with Umut Acar, Mike Rainey, and Ryan Newton at
CMU; Selective coherence is in collaboration with Umut Acar and Sam Westrick

Northwestern
University

Thanks to our sponsors:

ILLINOIS INSTITUTE"‘-"
OF TECHNOLOGY

Check out our OpenMP paper @ SC!

Wednesday, 4PM (227-228)

Thanks!

The Interweaving Project
http://interweaving.org

]] PARALLEL ARCHITECTURE GROUP @NORTHWESTERN

Kyle C. Hale

Thanks to our sponsors:

intel

Northwestern
Compiler
Group

29

